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Abstract— In order to protect electronic devices and
dedicated areas against exposure of RF-electromagnetic ra-
diation very thin screening materials will be employed.
Single and multi-layered metallic foils as well as meta-
materials will be utilized in favor. The ambition of this
contribution lies in the computation of such thin screens
with the finite element (FE) method. To overcome nu-
merical difficulties due to the very thin layers, analytical
descriptions of the layers will be implemented in the FE-
formulation. An improvement of the mesh truncation will
be achieved by prescribing improved impedance boundary
conditions containing a surface operator. A given antenna
and screen arrangement has been measured and a compar-
ison to the results obtained numerically will demonstrate
the efficiency and reliability of the way suggested.

Introduction

In general, highly sensitive electronic equipment will
be protected against electromagnetic radiation caused in-
ducement with the aid of cases coated by thin metallic
foils. Computing such configurations with the FE-method
is attended by the disadvantage of large jumps in the el-
ement size. Hence numerically bad conditioned sets of
equations to be solved will occur. Especially in cases
where large distances have to be considered, a huge effort
in a proper discretization is enforced. To overcome this,
it is the aim to avoid modeling the thin layers with FEs.
An analytical description of the thin layers instead can be
used as shown in [1]. In Fig. 1 the general arrangement
is illustrated.

Fig. 1. Basic arrangement, antenna in point of origin, domain
truncated by boundary Γtr.

An antenna is situated in the origin of the co-ordinate
system. At a distinct distance away the screen is placed.
It may consist of several layers and of variant materials.
This arrangement is surrounded by air and the FE-mesh
is truncated by the surface labeled with Γtr. In this con-
tribution a special focus has been cast in providing appro-
priate boundary conditions for that.

The variant kinds of mesh truncation when using finite
elements always represent a compromise between sufficient
accuracy and smallest possible computation effort. The
use of absorbing boundaries (ABC) has been improved
seriously by some iterative procedures, as reported eg. in
[2], [3] and [4]. Multiple calculations of the same problem
boost the effort and extend the computation time, thereby.
The application of perfectly matched layers (PMLs), as
suggested e.g. in [5], suffers from a condition number de-
graded set of equations system to be solved. Hence the
convergence while applying an iterative solving procedure
becomes worse.

Along the truncation boundaries (Γtr) the propaga-
tion direction can be determined by the location of the
radiating antenna and the truncation surface Γtr, only.
The knowledge of the incident angle of the outgoing wave
all-over Γtr enables the design of more precise conditions

between the tangential field vectors ~Et and ~Ht on it.

Surface operator containing boundary conditions

In finding improved boundary conditions for the trun-
cation surface Γtr we begin with the Maxwell equations

∇× ~E = −jωµ ~H, ∇× ~H = jωε ~E. (1)

Therein, the field vectors ~E and ~H as well as the ∇ op-
erator can be split into a normal and two orthogonal tan-
gential components. The normal component will be sub-
scribed by n and the tangential vector by t. It follows:

~E = ~Et + ~nEn, ~H = ~Ht + ~nHn, ∇ = ∇t +
∂

∂n
~n. (2)

With this relations the normal components of the fields,
En and Hn, can be eliminated in (1) to attain

∂(~n× ~Et)

∂n
= −jωµ ~Ht −

1

jωε
∇t × (∇t × ~Ht) (3)

∂(~n× ~Ht)

∂n
= jωε ~Et +

1

jωµ
∇t × (∇t × ~Et). (4)
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These equations are commonly valid, consequently on the
truncation surfaces, too. On Γtr the outgoing wave can

Fig. 2. Outgoing wave at a point on Γtr.

be represented by the wave vector ~k. Due to the knowl-

edge of the incident angle on Γtr, ~k can be decomposed

into a tangential vector ~kt and the perpendicular one ~β,
corresponding to

~k = ~kt + ~β, β = ±
√
k2 − k2

t , k = ω
√
µε. (5)

To get rid of the derivative ∂
∂ n on the left hand side in (4),

the integration along ζ (n-direction) over the positive half
space must be performed. Assuming a physical and lossy
media the field decays to zero at infinity, which results
into:

∞∫
ζ=0

~Ht0e
−jβ ζdζ =

1

jβ
~Ht0 ,

∞∫
ζ=0

~Et0e
−jβ ζdζ =

1

jβ
~Et0 . (6)

~Ht0 and ~Et0 are the tangential field vectors at ζ = 0.
Together with (5) the relation (4) changes to

~n× ~Ht0 =
ωε ~Et0√
k2 − k2

t

− ∇t × (∇t × ~Et0)

ωµ
√
k2 − k2

t

. (7)

Transverse components of the outgoing wave may be

transformed into the Fourier domain (e−j
~kt·~r -terms), only

to see, that its tangential derivatives can be expressed as

∇t = −j ~kt. The substitution in (7) leads to

~n× ~Ht0 =
ωε ~Et0√
k2 − k2

t

+
~kt × (~kt × ~Et0)

ωµ
√
k2 − k2

t

. (8)

This relation between the tangentials of ~Et0 and ~Ht0
now can be used to model the so called surface operator
boundary conditions (SOBC) on Γtr.

Implementation in a FEM-formulation

When applying the Galerkin method to the well known
~A, v-formulations [6], the ~n × ~Ht term occurs, hence (8)
can be implemented directly.

The weak form of the vectorial equation follows to

−
∫
Ω

∇× ~Ni ·
1

µ
∇× ~AdΩ +

∫
ΓH

~Ni · (~n× (
1

µ
∇× ~A))︸ ︷︷ ︸

~n× ~H

dΓ

+

∫
Ω

~Ni · (σ + jωε)jω( ~A+∇v)dΩ = 0. (9)

On the Neumann boundary ΓH the presented conditions
for the mesh truncation can be prescribed. So, the under-
braced term directly may be substituted by (8). Thereby,
the Neumann boundary ΓH corresponds to the truncation

surface Γtr. Expressing the field ~Et by the potentials, ac-
cording to

~Et = −jω( ~At +∇tv) (10)

and setting the electric scalar v to zero ends up in a sym-
metric matrix to be solved.

Conclusion

At first the disadvantage of modeling very thin layers
with finite elements has been overcome by applying an
analytical network equations representation of the layers.
Hence from that point of view the condition number of the
resulting equations system will not suffer any longer. An
improved mesh truncation condition has been proposed.
Advantage has been taken from the fact, that along the
truncation boundaries the incident angle of the outgoing
wave is known. Thus, improved absorbing conditions, con-
taining surface operators have been implemented in an in-
tegral term over the truncation boundary. Compared to
the PML mesh truncation a remarkably smaller domain
has to be computed and again, a well better conditioned
equations system will be obtained. Comparison to mea-
surements will be given in the full paper version.
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